The Schrödinger-Poisson System on the Sphere

نویسندگان

  • Patrick Gérard
  • Florian Méhats
چکیده

Abstract. We study the Schrödinger–Poisson system on the unit sphere S2 of R3, modeling the quantum transport of charged particles confined on a sphere by an external potential. Our first results concern the Cauchy problem for this system. We prove that this problem is regularly well-posed on every Hs(S2) with s > 0, and not uniformly well-posed on L2(S2). The proof of well-posedness relies on multilinear Strichartz estimates, and the proof of ill-posedness relies on the construction of a counterexample which concentrates exponentially on a closed geodesic. In a second part of the paper, we prove that this model can be obtained as the limit of the three-dimensional Schrödinger–Poisson system, singularly perturbed by an external potential that confines the particles in the vicinity of the sphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of nonlinear fractional Schrödinger-Poisson systems

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...

متن کامل

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Uniqueness for Dissipative Schrödinger-Poisson Systems

The paper is devoted to the dissipative Schrödinger-Poisson system. We indicate conditions in terms of the Schrödinger-Poisson data which guarantee the uniqueness of the solution. Moreover, it is shown that if the system is sufficiently small shrunken, then it always admits a unique solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2011